Читайте РБК без баннеров

Подписка отключает баннерную рекламу на сайтах РБК и обеспечивает его корректную работу

Всего 99₽ в месяц для 3-х устройств

Продлевается автоматически каждый месяц, но вы всегда сможете отписаться

Предикативная аналитика: как предсказать эпидемию и успех в бизнесе

С помощью статистики можно предсказать поломку оборудования, спрогнозировать, сколько клиентов перейдет к конкурентам, и узнать, кто из сотрудников скоро уволится

Что такое предикативная аналитика

Предикативная (или предиктивная, прогнозная) аналитика — это прогнозирование, основанное на исторических данных. С помощью статистических инструментов можно выявить закономерности в изменениях показателей в предыдущих периодах и предсказать, как они будут вести себя в будущем. Например, проанализировав котировки акций, можно просчитать обвал или изменение цен. Банки используют предикативную аналитику, когда оценивают заемщика, анализируя финансовые показатели и рассчитывая вероятность того, что клиент не сможет выплатить кредит.

Крупные компании создают целые отделы, занимающиеся предикативной аналитикой. Они преследуют разные цели — от оптимизации затрат на рекламу до повышения эффективности производства. Считается, что из всех видов бизнес-аналитики именно предикативная аналитика приносит наибольшую выгоду компаниям.

Фото: TDWI
Фото: TDWI

Как строится процесс

Основа прогнозной аналитики — большие данные (от англ. big data). Это огромные массивы информации, которые невозможно обработать с помощью привычных инструментов. Сейчас ИТ-компании предлагают готовые программы, которые анализируют большие данные и визуализируют их в виде дашбордов — наглядных таблиц, графиков и отчетов. Самый актуальный дашборд на сегодняшний день был создан центром системных наук и инжиниринга Университете Джона Хопкинса. Он демонстрирует количество заболевших коронавирусом во всех странах.

Скорость распространения коронавируса в мире
Случаев за сутки
Источник: JHU
Данные по миру i

Большие данные появляются постоянно — их генерируют компании, устройства и мы сами, когда пользуемся смартфонами и компьютерами, делаем покупки и путешествуем. Кроме того, они легко собираются и оцифровываются: например, если раньше мы покупали продукты на рынках и расплачивались наличными, то теперь чаще оплачиваем товары банковскими картами или делаем заказы в интернет-магазине.

Карманные банки: кто переносит в смартфоны сложные финансовые инструменты Фото:Gilles Lambert / Unsplash

Распространенные примеры данных:

  • генерируемые в интернете — посещаемость сайтов, данные о покупках в интернет-магазинах, «лайки»;
  • корпоративная информация — транзакции, отчеты о звонках в компанию, количестве покупателей;
  • показания приборов — сведения из различных датчиков, телеметрические данные;
  • экономические показатели.

Если перечисленные источники уже можно назвать «классическими», то в последние годы компании научились обрабатывать менее очевидные данные: зарплаты игроков американского футбола, содержание фильмов и географические координаты ударов молнии.

Построение прогноза состоит из нескольких этапов:

  • Определение цели анализа. От этого будет зависеть, какие именно данные нужно будет собрать.
  • Сбор данных из разных источников. Чтобы сделать более точный прогноз, важна их чистота и однообразие. В процессе могут быть введены некорректные значения или произойти сбои программного обеспечения, поэтому задача аналитиков — преобразовать их в подходящий вид.
  • Анализ с использованием статистических инструментов. Для этой цели есть готовые решения, но некоторые компании предпочитают создавать софт под собственные нужды.
  • Моделирование. На этом этапе часто используется машинное обучение и другие методы с применением искусственного интеллекта. Аналитики выявляют зависимости и факторы, влияющие на поведение показателей, и строят модель с прогнозом.
  • Применение на практике. Это финальный этап, когда становится понятно, насколько точным оказался прогноз. В процессе применения модель обучается на новых данных и корректирует прогноз.

Предикативная аналитика не может быть точной на 100%. Иначе, например, биржа не имела бы смысл — каждый мог бы предсказать, как поведут себя те или иные акции. В реальности на каждый бизнес-показатель влияет множество факторов, но точность предикативной модели можно повышать, работая над качеством данных и обучая ее.

Примеры применения предикативной аналитики

  • Продажи

Компании анализируют историю покупок и текущую активность клиента. Если по итогам анализа покупатель попадает в сегмент тех, кто потенциально может перейти к конкурентам, то ему могут предложить скидку, бонусы или подарок.

Шопинг-2020: пять революционных технологий в ретейле Фото:Charles / Unsplash

  • Управление кадрами

HR-специалисты используют предикативную аналитику, чтобы заранее выявить, кто из работников уволится, кто из кандидатов на вакансию преуспеет, сколько позиций нужно открыть в следующем году, сколько сотрудников воспользуются разными опциями медицинской страховки и т.д. Google использует ее, чтобы сохранить кадры — если аналитика предсказывает, что ценный работник скоро уйдет из компании, ему предлагают повышение или другую должность.

  • Производство

Анализируя данные об использовании оборудования, можно определить, когда оно будет нуждаться в профилактическом ремонте. Так, в феврале Mail.ru Group объявила, что создаст для «Сухого» цифровую платформу предикативной аналитики. Данные о работе промышленного оборудования и параметрах выполнения операций позволят прогнозировать исправность станков и осуществлять их своевременное обслуживание.

  • Финансы и банки

В этой сфере прогнозная аналитика используется особенно широко. Например, с ее помощью выявляются мошеннические транзакции. Банки смотрят на данные прошлых лет о нормальном поведении: расходах, обычном времени и географии транзакций. В случае аномалий организация получает уведомление и может запросить у клиента дополнительное подтверждение операции.

Как правильно пользоваться мобильным кошельком: инструкция в пяти шагах Фото:PhotoMIX Company / Pixabay

  • Маркетинг

Прогнозная аналитика особенно эффективна в интернет-маркетинге, где легко собрать информацию и быстро внести изменения. Она помогает снизить расходы на рекламу, показать объявление, подходящее конкретному пользователю, квалифицировать посетителя сайта как будущего платящего клиента, улучшить клиентский опыт и т.д.

  • Эпидемиология

Специалисты сервиса BlueDot в декабре 2019 года определили, что вспышка заболевания будет именно в провинции Хубэй, опубликовав первую научную публикацию, в которой были предсказания о глобальном распространении вируса.

Китайские ученые разгадали секрет COVID-19? Разбираем новость с экспертом

Бывают неожиданные области применения предикативной аналитики с искусственным интеллектом. О них рассказал технический директор Redmadrobot Data Lab Алексей Соколов:

  • Спорт. Компания ICEBERG анализирует хоккейные матчи, собирает статистику по игрокам, их владению шайбой и прогнозирует ряд показателей для клубов. Также в Японии был разработан алгоритм, предсказывающий на основе позы игрока место падения шарика для пинг-понга. По словам создателей, точность алгоритма составляет 75%.
  • Медицина. Помимо стандартных диагностических задач, предиктивная аналитика используется для разработки лекарств (с ее помощью можно моделировать белки для лечения определенных заболеваний), построения индивидуальных планов лечения и даже для качественной чистки зубов.
  • Азартные игры. Долгое время игра в покер считалась недоступной для машины. Сейчас алгоритмы научились блефовать, предсказывать поведение соперников и играть сильнее лучших игроков мира.

«Системы, построенные на машинном обучении, стремительно развиваются. Основная «пища» для алгоритмов такого рода — это данные и вычислительные мощности, и их становится все больше. Через пять лет машинные алгоритмы будут пронизывать все вокруг точно также, как электричество, — добавляет Алексей Соколов. — Скорее всего, государства научатся корректно регулировать интеллектуальные технологии, беспилотные автомобили станут нормой, а в медицине произойдут прорывы, которые позволяют людям жить дольше».


Подписывайтесь и читайте нас в Яндекс.Дзене — технологии, инновации, эко-номика, образование и шеринг в одном канале.

Следующий материал: