Как работают искусственный интеллект, машинное и глубокое обучение

Фото: Frank Augstein / AP
Фото: Frank Augstein / AP
Что значат эти понятия, в чем разница между ними, и в каких случаях уместно применять каждое?

Об авторе: Андрей Беляев, технический директор (CTO) исследовательской компании Neurodata Lab.

Умные дома, самоуправляемые автомобили, роботы-помощники… Нас окружают инновационные технологии, в основе которых лежат алгоритмы, по своей специфике напоминающие работу человеческого мозга. Их называют по-разному: алгоритмы с использованием машинного обучения, глубокого обучения, а иногда и вовсе искусственный интеллект (ИИ).

В чем разница между этими названиями?

Все задачи, которые может решать человек или компьютер, можно условно разделить на две категории: рутинные и нерутинные.

К рутинным задачам можно отнести те, где достаточно просто найти универсальный путь решения: например, сложение чисел или измерение температуры воздуха.

Искусственным интеллектом сейчас принято называть все, что способно решать нерутинные задачи на уровне, близком к человеческому, а иногда и лучше. Такие задачи окружают нас везде. Камеры над дорогой вычисляют скорость автомобиля, распознают его знак и высылают штраф, а системы безопасности в метро и аэропортах находят преступников в толпе. Все это сегодня принято считать искусственным интеллектом, хотя в действительности алгоритмы, лежащие в основе каждой такой технологии, уникальны. И только некоторые используют машинное обучение.

Как работают искусственный интеллект, машинное и глубокое обучение

Получается, что машинное обучение — это обучение ИИ

Искусственный интеллект — это название не какого-то отдельного алгоритма, но скорее группы методов, которыми пользуются для решения различного рода задач. Алгоритмы, которые используют подходы с обучением, являются лишь одной из подгрупп всего того множества алгоритмов, что принято называть искусственным интеллектом.

Машинное обучение — это подход, при котором алгоритм «учится» решать задачу. Один из самых простых примеров алгоритма, использующего машинное обучение, это классификация фотографий на те, где изображены кошки и те, где есть собаки:

Как работают искусственный интеллект, машинное и глубокое обучение

Допустим, есть несколько тысяч фотографий кошек и несколько тысяч — собак. Эти данные можно загрузить в алгоритм и заставить его «учиться» отличать кошек от собак, «ругая» за ошибки в классификации и «поощряя» за правильные ответы. В зависимости от количества и качества вводных данных, а также от сложности используемого алгоритма после некоторого количества итераций с «наказанием» и «поощрением», получается обученный алгоритм, которой с разным качеством умеет отличать кошек и собак.

Применяя методы машинного обучения, эти же алгоритмы можно «натренировать» и для выполнения более сложных задач — таких как поиск людей на кадре, определение пола и возраста человека и т.д.

Такие алгоритмы можно научить решать задачи любой сложности?

В теории — да. Но на практике мы сталкиваемся с большим количеством проблем, начиная от недостаточного количества данных для обучения, заканчивая невозможностью интерпретировать действия человека при решении такой же задачи. Получается, что невозможно построить алгоритм, который эти действия бы совершал. Хороший пример — автопилотируемый автомобиль. Научить машину держать полосу, входить в повороты и автоматически перестраивать маршрут, если на дороге ремонт, сравнительно несложно, потому что есть понимание, как вел бы себя человек (а значит, как должна вести себя машина) в таких ситуациях.

Фото:Михаил Почуев / ТАСС
Индустрия 4.0 Как ездят беспилотники и так ли они надежны, как говорят

Однако научить автомобиль принимать решения в чрезвычайных ситуациях гораздо сложнее: проблема в том, что и самому человеку трудно понять, как именно надо поступать в том или ином экстренном случае. Поэтому человек не может показать алгоритмам примеры хорошего и плохого поведения для таких случаев.

А что насчет глубокого обучения? Чем оно отличается от машинного?

Как машинное обучение является подвидом искусственного интеллекта, так и глубокое обучение является подвидом машинного (см. картинку в начале статьи). В глубоком обучении используются те же подходы: алгоритму дают много данных и «ругают» его за ошибки. Разница здесь в том, что сами алгоритмы глубокого обучения устроены гораздо сложнее и часто используют более серьезные математические модели. Сейчас под алгоритмами глубокого обучения практически всегда подразумевают нейронные сети.

Нейронные сети? Как те, что в мозгу у человека?

Такое сравнение действительно часто используется. Нейронная сеть — это последовательность слоев, каждый из которых, в свою очередь, состоит из нейронов, и каждый выполняет свою роль. Есть нейроны (или структуры нейронов), которые учатся выделять важные элементы на изображениях, например шерсть у кошки или собаки; есть те, которые учатся делать выводы, исходя из выделенных элементов — например, если у животного длинные лапы, то, скорее всего, это собака. Эти нейроны объединяются в группы (слои), а они превращаются в единую искусственную нейронную сеть.

Фото:Neuralink
Индустрия 4.0 Нейрочип Neuralink: действительно ли мы будем вживлять гаджеты в мозг

И все же можно как-то сравнить процессы внутри нейросети с деятельностью мозга?

Некоторое количество идей, используемых в нейросетях, разработчики почерпнули из знаний об устройстве человеческого мозга. Одни из самых частых задач для нейросетей — это задачи, связанные с работой с изображениями. Для таких задач используют специальный тип нейросетей, внутри которых есть так называемые сверточные слои.

Если говорить упрощенно, смысл этой сверточной нейронной сети в том, чтобы оценивать каждый элемент картинки (пиксель) не отдельно, а в группе с несколькими соседними, благодаря чему можно находить как базовые фигуры (линии, углы, и т.д.), так и объекты целиком. Примерно такой же процесс происходит и в человеческом мозге при обработке визуальной информации. После снятия всех возможных визуальных признаков в нейросети, как и в человеческом мозге, происходит анализ этих признаков, а затем принимается решение: видим мы, допустим, кошку или собаку.

Фото:Michael Dziedzic / Unsplash
Экономика инноваций Богатое воображение: математики объяснили секреты человеческого зрения

А как происходит процесс обучения?

Процесс обучения алгоритма во многом напоминает процесс обучения человека. Как мы совершаем ошибки и учимся на них (например, что не стоит засовывать руку в кипящую воду), так и алгоритмы, использующие машинное обучение, совершают ошибки, за что получают штраф.

Как работает нейросеть? В качестве примера можно рассмотреть процесс обучения нейросети распознаванию лиц. Чтобы корректно обучить любую нейросеть, нужно сделать две вещи: собрать достаточное количество данных и определить, за что мы будем ее штрафовать. Применительно к этой задаче необходимо собрать несколько десятков фотографий лиц для каждого из людей, которых надо определить, и штрафовать нейросеть за то, что предсказанный ею человек не совпадает с человеком на фотографии.

Что значит «поощрять» и «штрафовать» нейросеть?

С математической точки зрения нейросеть — это функция с большим количеством параметров. Штрафование этой функции за неверное определения лица — это когда мы, упрощенно говоря, корректируем работу функции таким образом, чтобы в будущем она меньше ошибалась. Соответственно, поощрение нейросети — это когда мы ее просто не штрафуем.

График зависимости между длительностью обучения (горизонтальная ось) и конечной ошибкой (вертикальная ось). Чем дольше мы учим нейросеть, тем меньше ошибка.
График зависимости между длительностью обучения (горизонтальная ось) и конечной ошибкой (вертикальная ось). Чем дольше мы учим нейросеть, тем меньше ошибка.

Во всех примерах вы рассказываете про конкретные задачи. А можно ли нейросеть научить думать, как человек?

Это уже скорее философский вопрос. Мыслительный процесс напрямую связан с наличием сознания. Нейронная сеть, как и любой другой алгоритм машинного обучения, по своей сути является лишь математической функцией, и умеет решать лишь одну конкретную задачу. Нейросеть, которую учили отличать кошек и собак, не сможет отличить медведя от слона, ведь она даже не знала, что такие существуют. Процессы же анализа данных, которые происходят в голове у человека, намного сложнее чем те, что происходят в нейросети, так что даже при наличии данных, сопоставимых по размеру с массивом информации, которую за жизнь получает человек, сегодня обучить нейросеть думать, как человек, невозможно.

Подписывайтесь и читайте нас в Яндекс.Дзене — технологии, инновации, эко-номика, образование и шеринг в одном канале.

Обновлено 29.09.2020
Главная Лента Подписаться Поделиться
Закрыть