Что такое энергопереход и почему о нем все говорят
К 2021 году научное сообщество пришло к окончательному выводу о том, что стало главной причиной изменения климата. Исследователи Корнелльского университета провели метанализ 88 125 работ, в которых 99,9% ученых заявили — глобальное потепление вызвано вмешательством человека. Это подтверждает похожее исследование 2013 года, в котором группа ученых из США, Австралии и Канады также связывала изменения климата с человеческим фактором.
Как правило, изменения климата связывают с использованием ископаемого топлива — угля, нефти и газа. В 2015 году 195 стран подписали Парижское соглашение, согласно которому правительства собираются замедлить нагрев Земли. Для этого планируется совершить энергопереход — перейти на экологичные источники энергии.
Условно все источники можно поделить на:
- Возобновляемые — те, что могут давать бесконечную энергию. К ним относят солнце, ветер, вода, биотопливо и другие.
- Невозобновляемые — те, что рано или поздно могут закончится. К ним относят нефть, газ, атомную энергию.
Чаще всего экологичными считаются возобновляемые источники энергии (ВИЭ), поскольку при их использовании не выделяются углеводород, радиоактивные отходы и другие вредные вещества.
При этом вопрос, что считать «грязной» энергетикой, остается неоднозначным. В начале 2022 года Еврокомиссия признала атом и газ в качестве «зеленых» источников энергии. В ЕС считают, что ветер, вода и солнце не могут обеспечить бесперебойным питанием предприятия и людей.
Из-за противоречий трудно понять, насколько каждый вид топлива эффективен и не несет вреда окружающей среде. Разберемся в этом подробнее.
Сколько энергии приносят солнце, ветер и вода
Чаще всего в качестве возобновляемой энергии используют солнечный свет. Согласно базовому прогнозу Международного энергетического агентства (МЭА), к 2030 году 80% новых мощностей придется именно на этот тип энергии. Солнечные панели позволят производить 4 813 ТВт электричества в час.
В МЭА также считают, что к 2030 году доля солнечной и ветряной энергии увеличится на 30%. При этом у ветряных турбин есть преимущество перед солнечными панелями — они занимают меньше места по площади, а значит, их можно размещать прямо на сельхозугодьях. А разместив несколько «ветряков» рядом, можно добыть еще больше энергии. Так, в Дании, Германии и Нидерландах к 2050 году планируют возвести искусственный остров в море и разместить на нем ветроэнергетическую станцию. Она сможет вырабатывать до 100 ГВт·ч электричества в год.
Главные преимущества возобновляемой энергии — в том, что ее ресурсы неограничены, а добыча экологична. Несмотря на это, у «зеленой» энергии есть недостатки:
- Дешево добывать, но дорого передавать. По данным МЭА, передача энергии от ветряных станций обходится в три раза дороже, чем от угольных ТЭЦ.
- Непостоянство. Возобновляемые источники сильно зависят от природных условий: продолжительность световых суток меняется в течение года, а на скорость ветра влияют ландшафт и погода.
Чтобы уменьшить воздействие этих недостатков, компании улучшают способы добычи электроэнергии. Например, в солнечной энергетике начинают применять перовскит: он позволяет создавать более тонкие панели, которые можно устанавливать в стекла зданий. Благодаря этому можно увеличить полезную площадь и получать больше энергии.
А General Electric придумала размещать «ветряки» на воде — каждая турбина стоит на платформе, которая крепится ко дну с помощью тросов. Поскольку из-за берегового эффекта скорость ветра на воде выше, это позволяет получить больше энергии, чем если размещать турбины на суше.
Кроме того, инженеры придумывают, как поднимать турбины на несколько сотен метров, где есть стабильные воздушные потоки. Такие конструкции снизят зависимость от погоды, однако до коммерческого применения турбины на планерах и аэростатах еще не дошли.
Как и сколько страны инвестируют в ВИЭ
План по переходу к возобновляемой энергии идет параллельно с достижением углеродной нейтральности — состояния, когда компании перестанут выделять углекислый газ или смогут компенсировать выбросы за счет углеродно-отрицательных проектов. Такого плана придерживаются в Евросоюзе, где разработали Green Deal — меры по коррекции экономического курса, которые должны сформировать углеродно-нейтральное пространство к 2030 году. Чтобы достичь цели, в ЕС планируют:
- сократить на 40% объем выбросов парниковых газов до уровня 1990 года;
- нарастить долю ВИЭ среди всех источников энергии до 32%.
По подсчетам Еврокомиссии, на достижение этих задач понадобится инвестировать по €260 млрд каждый год.
Россия планирует выйти на на углеродную нейтральность к 2060 году.
Помимо ЕС, лидерами по инвестициям в ВИЭ стали Китай, США, Япония и Великобритания. По данным рейтинга BloombergNEF, больше всего страны вкладывают в ветровую и солнечную энергетику, биотопливо и малую гидроэнергетику. За 20 лет инвестиции выросли с $33 млрд до более чем $300 млрд.
Эти деньги направляются как на расширение существующих «зеленых» электростанций, так и на их улучшение. Например, за последние годы для «ветряков» стали применять искусственный интеллект: он помогает получить более точный прогноз погоды и настроить турбины так, чтобы они вырабатывали больше электричества.
Кроме увеличения мощностей появляются идеи и для хранения энергии. Так, швейцарский стартап Energy Vault придумал необычную конструкцию в виде 200-метровой кирпичной башни с кранами на крыше. Когда электростанции нужно сохранить энергию, краны автоматически собирают башню, а если нужно «отдать» — то разбирают. В 2019 году стартап привлек $100 млн от SoftBank.
Что происходит с ВИЭ в России
Традиционно считается, что в России слабо развита «зеленая» энергетика. В частности, размер отечественного рынка ветроэнергетики занимает меньше 1% от мирового.
Специалисты отмечают, что развитие ВИЭ в нашей стране тормозят два фактора:
Сомнения в «зеленой» энергетике. «Многие жители страны, включая лиц, принимающих решения, сомневаются, что за счет энергии солнца и ветра можно стабильно снабжать предприятия электроэнергией, считают, что для солнечной электростанции необходима огромная территория», — считает старший научный сотрудника РАНХиГС Татьяна Ланьшина.
Мало специалистов. «К сожалению, в России слабая инженерная база. У нас мало инженеров, ориентирующихся в современном оборудовании и технологиях, которые могли бы заниматься практическим обучением новых специалистов. Сейчас институт инжиниринга в России — это наследие СССР, которое с 1980-х годов эволюционирует очень медленно, а зачастую и вовсе закрыто к современным идеям», — заявил гендиректор Neosun Energy Илья Лихов.
Несмотря на трудности, энергопереход в России могут ускорить внешние факторы. Одним из них стал углеродный налог, который Еврокомиссия обяжет платить отечественные компании. Согласно методике РБК, подтвержденной в Минэкономразвития, поставщики российских товаров с большим углеродным следом будут платить в бюджет Евросоюза не менее €1,1 млрд в год.
Чтобы сократить отставание в «зеленой» энергетике, в 2021 году правительство запланировало увеличить долю ВИЭ в энергобалансе страны с 1% до 10% в 2040 году. А до 2035 года в развитие возобновляемых источников планируется привлечь инвестиций на ₽1 трлн. По словам министра энергетики РФ Александра Новака, в 2021 году в стране было введено 1 400 МВт солнечных и ветровых электростанций. Это позволило в 1,5 раза увеличить установленную мощность объектов ВИЭ, выработка за год выросла на 75%.
Однако наиболее наибольшую поддержку получат водородная и атомная энергетика — на развитие последней только в трехлетнем бюджете заложено около ₽40 млрд. Так, сейчас идет строительство строительство реактора на быстрых нейтронах БРЕСТ, запуск которого запланирован на 2029 год. К 2030 Россия планирует занять 20% мирового рынка атомных электростанций малой мощности, 24% рынка ядерного топлива и 20% мирового рынка водорода.
Какие инновации используют в невозобновляемой энергетике
Нефть до сих пор остается топливом № 1 в мире — доля ее потребления оценивается в 31%. В МЭА считают, что спрос на нефть останется высоким до конца 2020-х годов. А поскольку производителям углеводородов нужно поддерживать баланс спроса и предложения, к 2025 году цена на нефть составит $71 за баррель, а в 2040 — $85.
Чтобы добыча нефти наносила меньше вреда экологии, компании улучшают технологические процессы. Например, предприятия перестают сжигать попутный газ (выделяется при добыче и обработки нефти. — РБК Тренды): это помогает уменьшить количество вредных выбросов, а также использовать его для обогрева домов или в производстве. По данным «Сибура», такая технология позволяет увеличить переработку попутного газа в три раза.
Примечательно, что «зеленую» энергию можно использовать в том числе и для добычи углеводородов. По такому принципу работают нефтедобывающие платформы у берегов Норвегии. Электричество для платформы получают из возобновляемых источников, а также за счет попутного газа.
Если выбросов CO2 не избежать, то их можно улавливать. В этом компаниям помогают специальные установки, которые засасывают выбросы с помощью вентиляторов рядом с предприятиями, а затем пропускают его через абсорбент. В дальнейшем углекислый газ закачивают под землю в истощенные или действующие месторождения нефти. Технологии CCS (сarbon capture and storage, улавливание и хранение углерода) развиваются с 1970-х годов, но сейчас речь идет о прямом улавливании и связывании углерода, уже присутствующего в атмосфере; такие установки можно размещать непосредственно в местах хранения углекислого газа, а не привязываться к источнику выбросов и транспортировать газ.
Швейцарские ученые заявляют, что в зависимости от условий такой способ позволяет удалить CO2 с эффективностью до 97%, а некоторые стартапы даже планируют превращать адсорбированный углерод в реактивное топливо. Проблема заключается в масштабах: мировые мощности действующих систем DAC (direct air capture, прямое улавливание воздуха) составляют лишь 9 тыс. т CO2 в год.
Кроме нефти и газа, улучшения приходят и в атомную энергетику. Так, американский стартап NuScale вместо крупных реакторов предлагает создавать мини-реакторы, которые будут обслуживать конкретную фабрику и район. Они дешевле в установке и создают меньше рисков из-за потенциальных аварий.
Какие инновации внедряются в традиционной энергетике в России
В российских компаниях, которые занимаются традиционной энергетикой, также постепенно происходят перемены. Например, «Роснефть» отказывается от сжигания попутного газа на факельных установках, а кузбасские ученые предлагают технологии разработки месторождений, которые в три раза сокращают технологические потери угля.
Другой пример внедрения технологий показала «Газпром нефть». Компания добывает нефть за счет заводнения, закачивая воду в скважины. При этом расчет нужного объема воды происходил раз в год, из-за чего приходилось тратить лишнюю энергию. Теперь заводнение рассчитывают в реальном времени — на скважинах установили датчики, которые собирают данные и сверяют их с математической моделью. В результате компания снизила выбросы CO2 и загрязняет меньше воды.
Во Всероссийском научно-исследовательском институте по переработке нефти придумали очищать мазут и использовать его как судовое топливо. Технология позволяет перерабатывать до 95% отходов нефтяного производства.
Помимо модернизации и изменения технологического цикла, есть примеры и строительства объектов по повышению энергоэффективности. Так, компания Solartek из группы «ТехноСпарк» строит первый в стране завод по производству гибких солнечных панелей. Его проектная мощность оценивается в 10 МВт в год.
С 2019 года в Новочебоксарске заработала новая линия по производству гетероструктурных фотоэлектрических ячеек. В отличие от моно- и поликристаллических модулей, они позволяют получить на треть более высокий КПД от одной ячейки — до 23,5%. Также отечественные модули эффективно работают при температурах от минус 60 °C до плюс 85 °C и сохраняют до 80% мощности в течение 25 лет.
Другой «апгрейд» касается ветряных станций. Ученые НИУ «МЭИ» создали установку для станций с двумя ветроколесами. При изменении погоды установка автоматически меняет угол между «лопастями». Такая технология позволяет выиграть до 5% мощности.
Кроме технологий сокращения выбросов и энергоэффективности, в стране проходят наукоемкие изыскания вопросов поглощения углерода экосистемами. Так, например, в ХМАО для мониторинга планируют построить карбоновые полигоны, а ученые уже исследуют возможности торфяных болот.
В качестве объединения традиционной и «зеленой» энергетики исследователи из ОКБ «Факел» предлагают использовать двигатель Стирлинга. Этот двигатель можно установить на ТЭС, где он будет вырабатывать электричество за счет вторичного тепла. Также двигатель может работать за счет геотермальных источников или солнечных модулей.
Еще одна разработка связана с биотопливом. В Тамбовском государственном техническом университете научились перерабатывать солому, опилки и другие отходы с помощью термического разложения. На выходе из биомассы ученые получают биотопливо высокого качества.
Кроме того, ученые работают над тем, чтобы вырабатывать электроэнергию из растений. Так, биологическими фотогальваническими ячейками в России занимался проект «Green Spark». Однако подобные технологии требуют десятилетий развития.