Три типа искусственного интеллекта
На сегодняшний день искусственный интеллект ученые определяют, как алгоритмы, способные самообучаться, чтобы применять эти знания для достижения поставленных человеком целей. Системы машинного обучения (основной подраздел ИИ) автоматизировали процессы во всех жизненно важных областях, включая банкинг, ретейл, медицину, безопасность, промышленность.
Выделяют три вида искусственного интеллекта: слабый (Narrow AI), сильный (AGI) и супер-ИИ (Super AI).
Первый вид используются повсеместно (включая голосовых ассистентов, рекламу в соцсетях, распознавание лиц, поиск романтических партнеров в приложениях и так далее); эти системы слабого ИИ единственные доступные на сегодня.
Сильный ИИ максимально приближен к способностям человеческого интеллекта и наделен по классическому определению Тьюринга самосознанием; по мнению экспертов, AGI сформируется примерно к 2075 году, а спустя еще 30 лет придет время для супер-ИИ.
Супер-ИИ мог бы не просто стать подобным людям, но и превзойти лучшие умы человечества во всех областях, при этом перепрограммируя самого себя, продолжая совершенствоваться и, вероятно, разрабатывая новые системы и алгоритмы самостоятельно.
На что способен искусственный интеллект уже сейчас
Оценить динамику может каждый, кто пользуется автоматическими переводчиками. Еще лет пять назад Google Translate более-менее сносно справлялся с отдельными наборами фраз и предложениями, тогда как сегодня программа переводит большие смысловые блоки, нейросети учитывают контекст, оперируют огромными массивами статистических данных. Сейчас можно читать статьи на хинди, китайском, арабском, не зная языка.
ИИ давно используется в финансовой сфере для оценки платежеспособности заемщика. Есть вам отказали в выдаче кредита на первом этапе ― вас отсеял именно искусственный интеллект. В США в некоторых штатах ИИ применяют в судебной системе для оценки продолжительности тюремных сроков для обвиняемых.
Алгоритмы помогают врачам ставить диагнозы. Например, «СберМедИИ» (входит в экосистему «Сбера») и Лаборатория по искусственному интеллекту Сбербанка совместно разработали приложение AI Resp: нейросеть анализирует голос пациента, дыхание и кашель, чтобы определить вероятность коронавирусной инфекции. Ранее Лаборатория по ИИ и «СберМедИИ» представили онлайн-сервис «КТ Легких», определяющий локализацию и степень поражения легких для диагностики вирусной пневмонии, в том числе COVID-19, по снимкам компьютерной томографии. Также при использовании этого сервиса ИИ позволяет выявлять онкологические заболевания на ранней стадии при анализе КТ грудной клетки и может помогать врачам при диагностике.
На данный момент разработано несколько значимых технологий в сфере искусственного интеллекта.
- GPT-3 из области естественной обработки языка (NLP), самая сложная и в то же время гибкая нейронная сеть, способная генерировать статьи почти по любой теме, которые на первый взгляд трудно отличить от созданных человеком.
- Нейросеть AlphaFold 2, ставшая прорывом в медицинской науке, способна определять трехмерную структуру белка с высокой точностью всего за несколько часов, в сравнении с традиционными методами.
- Алгоритмы AutoML (автоматизированное машинное обучение) сделали ИИ доступным малому и среднему бизнесу благодаря интеграции с облачными системами (например, MLSpace от SberCloud, Microsoft Azure или AutoML от Google). Используя среду разработки, предприятия могут написать свои алгоритмы, к примеру, для обработки обращений клиентов или улучшения прогнозирования спроса.
Искусственный интеллект превосходит людей по IQ и креативности: в викторинах он набирает на 40% больше баллов, по вопросам SAT (тест для оценки знаний абитуриентов США) — на 15% больше баллов, чем средний абитуриент колледжа.
Роль ИИ в экономике
PwC прогнозирует увеличение мирового ВВП на $15,7 трлн к 2030 году благодаря развитию искусственного интеллекта. К этому времени Китай станет ведущей мировой державой в сфере ИИ с увеличением ВВП на 26%, Северная Америка будет следующей с ростом ВВП на 14,5%, за ней последует рост на 11–12% в крупнейших экономиках Европы. Развивающиеся страны получат наименьшую выгоду, поэтому есть риск усиления цифрового неравенства.
Влияние пандемии на внедрение ИИ в бизнесе
Кризис только ускорил внедрение ИИ, и этот импульс сохранится в дальнейшем, показывают опросы: большинство компаний (52%) стали быстрее внедрять ИИ из-за пандемии, 86% респондентов утверждают, что ИИ становится «основной технологией» в их компании.
Почти три четверти бизнес-лидеров положительно оценивают роль ИИ после пандемии и сопутствующего кризиса. Большинство руководителей (74%) не только ожидают рост эффективности бизнес-процессов, но и создание новых бизнес-моделей (55%), новых продуктов и услуг (54%) — благодаря внедрению ИИ.
По мнению экспертов Оксфордского университета, к 2026 году ИИ напишет эссе, которое сойдет за написанное человеком, заменит водителей грузовиков к 2027 году и станет выполнять работу хирурга к 2053 году. Также ИИ превзойдет людей во всех задачах в течение 45 лет и автоматизирует все рабочие места в течение 120 лет.
Консалтинговая компания Accenture утверждает, что ИИ способен увеличить прибыль компаний в среднем на 38%. По словам экспертов и представителей бизнеса, ИИ помогает компаниям прогнозировать и выявлять проблемы, а также восполняет нехватку навыков сотрудников, хотя до построения бизнес-стратегии искусственным интеллектом еще далеко.
Большинство опрошенных компаний инвестируют в ИИ (90%) и согласны с тем, что данные технологии способствуют развитию бизнеса, выяснили MIT Sloan Management Review и BCG. Тем не менее, компании так и не научились извлекать из ИИ реальную выгоду. И это не единственный проблемный момент в сфере искусственного интеллекта.
Основные вызовы технологии ИИ
Бизнес-процессы
Чтобы компания извлекала прибыль, недостаточно вложить средства в алгоритм и получить первые успешные результаты после запуска пилотного проекта. Внедрение ИИ — это многоуровневый процесс, включающий культурные изменения в компании, найм и обучение специалистов по data science, автоматизацию и построение бизнес-процессов с учетом алгоритмов, и на этом весь список не заканчивается.
«Говоря о внедрениях, необходимо приложить усилия в пропорциях 10–20–70. То есть, примерно 10% усилий должно уйти на создание алгоритма, 20% на построение технологии и 70% на организацию бизнес-процессов. Компания должна быть на определенном уровне технологической зрелости для того, чтобы внедрение ИИ приносило пользу», — говорит Леонид Жуков, генеральный директор Института Искусственного Интеллекта AIRI, старший управляющий директор Лаборатории по искусственному интеллекту Сбербанка.
Выступая на международной конференции Сбера AI Journey 2021, Юрген Шмидхубер, ученый в области искусственного интеллекта, главный научный советник Института Искусственного Интеллекта AIRI и научный руководитель компании NNAISENSE отметил, что компании в основном сосредоточены на своих частных проблемах, а не на развитии технологий искусственного интеллекта: большая часть их прибыли от ИИ приходится на маркетинг и продажу рекламы.
Такие гиганты как Alibaba, Amazon, Facebook, Google массово используют глубокие искусственные нейронные сети, например, Long-Short-Term Memory, чтобы предсказать спрос пользователей и дольше удерживать их на своих платформах, заставляя переходить по большему количеству рекламных объявлений.
Нехватка специалистов
ИИ развивается с высокой скоростью, и то, что называлось полгода назад state-of-the-art (высшим уровнем развития), сегодня может оказаться средней разработкой. Если раньше в сфере искусственного интеллекта была занята узкая прослойка специалистов, сейчас при таком огромном спросе попросту не хватает квалифицированных кадров, способных справиться с постоянно развивающейся технологией, отмечает Жуков.
Спрос на ИИ-специалистов вырос на 74% за 2016–2019 годы, сейчас две из пяти компаний, использующих ИИ на продвинутом уровне, отмечают острую нехватку специалистов, трудности с наймом также возглавляют список проблем в области ИИ.
Проблемы машинного обучения
Качество данных — второе по значимости препятствие для внедрения ИИ, после нехватки специалистов. Для успешных результатов алгоритмам необходимы качественные «вводные», включая размеченные и чистые данные. Неправильно заданные паттерны могут провоцировать систему делать ложные выводы: например, ошибочно сигнализировать о мошеннической транзакции, или осудить невиновного.
На качество влияет и степень предвзятости, или bias, включая гендерные и расовые предрассудки, которым может быть подвержен человек, работающий с алгоритмом.
Количество данных. Помимо качества, компьютеру все еще требуется большой объем данных и ресурсов для выполнения простейших задач. Отличать собак от кошек ИИ научится за три дня, задействуя 10 млн изображений и 16 000 компьютеров, в то время как ребенку хватило бы пары фотографий и нескольких минут. Если бы модель GPT-3 обучали читать и писать статьи не на суперкомпьютере, а на обычном ПК, весь процесс занял бы примерно 500 лет.
«На данный момент перед исследователями ИИ стоят несколько вызовов. Это умение искусственного интеллекта ставить перед собой новые задачи на основе имеющихся знаний; способность обучаться, не забывая полученные знания; и умение учиться разбивать цель на подцели. Преодоление этих проблем приблизит ученых к созданию таких машин, которые смогут лучше понимать человека и помогать достижению все более амбициозных целей», — отмечает Михаил Бурцев, директор по фундаментальным исследованиям Института Искусственного Интеллекта AIRI, заведующий Лабораторией нейронных систем и глубинного обучения МФТИ.
Применение в другом контексте. Хотя искусственный интеллект сегодня способен выполнять различные функции — от распознавания кошек и собак до предсказания поломок на нефтяных платформах, — это все еще узконаправленные задачи. ИИ пока что не умеет применять полученные навыки в непривычных условиях.
Влияние на климат
Проблема потребления энергии искусственным интеллектом напрямую связана с количеством ресурсов, задействованных в обработке данных. Обучение же одной NLP-модели (подобной GPT) требует столько же энергии, сколько автомобиль за весь его срок службы, и производит в пять раз больше CO2.
Во всем мире центры обработки данных потребляют около 200 ТВт·ч электроэнергии в год — больше, чем некоторые страны. В то же время, есть и противоположный эффект — ИИ поможет снизить выбросы парниковых газов на 1,5–4% к 2030 году, согласно отчету Европейского парламента.
Использование ИИ в науке
Машинное обучение стало ключевым инструментом исследователей из разных областей, однако потенциал ИИ в науке еще предстоит раскрыть, отмечает Леонид Жуков. Стимулирование новых открытий с помощью ИИ актуально, например, в области создания новых материалов при помощи вычислений или в прогнозировании изменений климата для разработки стратегий повышения устойчивости к изменениям окружающей среды. Например, в рамках стремления к достижению углеродной нейтральности, ученые из группы поиска новых материалов Института AIRI совместно со Сбербанком разработали прототипы моделей, позволяющих оптимизировать контроль качества на производстве солнечных батарей.
В перспективе машинное обучение может активнее применяться для охраны дикой природы в малодоступных регионах и подсчете особей, понимания сложной органической химии и в исследовании темной материи.