Читайте РБК без баннеров

Подписка отключает баннерную рекламу на сайтах РБК и обеспечивает его корректную работу

Всего 99₽ в месяц для 3-х устройств

Продлевается автоматически каждый месяц, но вы всегда сможете отписаться

Какие технологии из космической отрасли мы используем ежедневно

Фото: Shutterstock
Фото: Shutterstock
Благодаря изучению космоса в нашей жизни появились новые технологии: например, камера с CMOS-матрицей и кроссовки с амортизацией. И подобных изобретений десятки. Подробнее о них — в материале РБК Трендов

Хайлайты:

  • Луноходы — вовсе не прототип удобной спортивной обуви. На эволюцию кроссовок повлияли герметичные скафандры и шлемы космонавтов, а еще стереофотограмметрическая система, которую в космосе использовали для оценки расстояния до объектов.
  • Технология лазерного радара стала популярна после миссии «Аполлон-15». Теперь ее используют в смартфонах, беспилотниках, а также для определения глубины водоемов, поиска археологических улик, предупреждения лесных пожаров и при лазерной коррекции зрения.
  • NASA помогло разработать плавательный костюм, в котором спортсмены на Олимпиаде в 2008 году побили 25 мировых рекордов.
  • Техника с дистанционным управлением, которая открыла эру умного дома, тоже результат освоения космического пространства.
  • В космосе переработкой пластика занимается 3D-принтер. Скоро перерабатывать пластик и создавать из него новые предметы с помощью этой технологии можно будет и на Земле.

Путешествия в космос не только открыли нам возможность видеть пространство за пределами земной атмосферы, но и стали причиной появления новых технологий, которыми мы теперь пользуемся каждый день. Компания NASA даже разработала специальный сайт, чтобы показать, какие космические технологии стали частью обычной жизни.

Выпуск YouTube-канала «Индустрия 4.0», посвященный космическим технологиям в быту

Найти достоверную информацию о том, какие технологии действительно появились благодаря освоению космоса, непросто. Вокруг этой темы существует много мифов — например, есть достаточно правдоподобная легенда о том, что луноходы — это прототипы беговых кроссовок.

В 1969 году Нил Армстронг и Базз Олдрин впервые ступили на поверхность Луны в ботинках, созданных компанией General Electric — крупным подрядчиком NASA в подготовке миссии «Аполлон-11». Стоит заметить, что космическая обувь никак не меняла походку космонавтов. «Летящей» ее делала гравитация, которая на Луне в шесть раз слабее, чем на Земле. Особенность ботинок космонавтов заключалась в силиконовой подошве, и будто бы именно она стала прародительницей кроссовок с полыми подошвами. Но это не совсем правда. Космос действительно повлиял на эволюцию спортивной обуви, но не луноходами, а скафандрами и шлемами.

Еще одно изобретение, которое часто приписывают к заслугам космических исследований, — липучка для одежды. На орбите их использовали для того, чтобы не потерять ничего в условиях невесомости. Вот только появились липучки задолго до появления человека в космическом пространстве — в 1955 году благодаря Жоржу де Местралю. Космическая гонка повлияла только на рекламу изобретения, которая вдохновила людей на создание детской одежды с липучками, а позже — экипировки для горнолыжников и дайверов.

Так какие изобретения действительно появились благодаря исследованиям космоса, а какие стоит ожидать в скором будущем?

Космические технологии, которые мы используем уже сейчас

Кроссовки с инновационной подошвой

  • Nike Air

В 1970-е годы инженер NASA Фрэнк Руди придумал, что одежду космонавтов можно сделать более герметичной за счет воздушных прослоек. Разработка Руди стала толчком для создания обуви с полыми подошвами, в которых амортизация снижает нагрузку на суставы во время движения. Происходит это за счет расположенных под пяткой и передней частью стопы подушечек с взаимосвязанными воздушными ячейками. Свою идею инженер начал предлагать производителям кед и ботинок, но откликнулись на космическую разработку только в компании Nike. Дизайнеры Nike решили выставить технологию напоказ и поместили воздушную капсулу в «окошке» прямо под пяткой — так появились Nike Air.

Но кроссовки Nike Air — не единственная модель спортивной обуви, которая появилась благодаря освоению космоса. В 2003 году за несколько минут до приземления разбился шаттл NASA «Колумбия». Установили, что причиной аварии было падение куска теплоизоляционного кислородного бака еще при старте. Это произошло из-за разрушения наружного теплозащитного слоя на левой части крыла.

  • Adidas AlphaBOUNCE

Во время расследования NASA использовало стереофотограмметрическую систему ARAMIS. Суть ее в следующем. Две синхронизированные камеры снимают процесс столкновения двух материалов. Далее программное обеспечение анализирует их деформацию. Технология похожа на человеческое зрение, которое видит окружающий мир в трехмерной плоскости. «С помощью двух камер мы можем точно понять, приближается или удаляется объект, и оценить расстояния, которые оно преодолевает», — объяснил Джон Тайсон, президент компании, которая построила стереофотограмметрическую систему, используемую NASA.

Такую же технологию решила использовать Adidas для создания новой модели кроссовок AlphaBOUNCE, которые презентовали в 2016 году. Для этого были проанализированы движения ног марафонцев босиком и в обуви. Выяснили, что во время бега кроссовок сжимает сухожилие. Поэтому решили сделать v-образное отверстие в задней части ботинка, чтобы нога могла свободно двигаться. Также разработчики создали материал под названием Forgedmesh, который обеспечивает опору ноги и гибкость движения одновременно.

Фото:NASA
Фото: NASA

Плавательный костюм

В 2008 году NASA совместно со спортивным брендом Speedo разработало плавательный костюм для спортсменов. Он снижает сопротивление воды на 38%. Это увеличивает скорость пловцов примерно на 4%. Более того, он максимально поддерживает мышцы и не ограничивает движения.

Бесшовный костюм производят из высокотехнологичной сверхлегкой водоотталкивающей ткани. Ткань состоит из переплетенных нитей эластана-нейлона и полиуретана.

Производители утверждают, что благодаря этому костюму у спортсменов на 1,9-2,2% выше вероятность победить. Американские пловцы Натали Кафлин и Майкл Фелпс уверены, что стали олимпийскими чемпионами в 2008-м в том числе благодаря костюму от NASA. На Олимпиаде в Пекине 98% медалистов по водным видам спорта были именно в этом костюме, побив заодно 25 мировых рекорда.

Фото:NASA
Фото: NASA

Цифровая фотография

Техническим оборудованием для съемки высадки на Луну «Аполлон-11» обеспечила шведская компания Hasselblad. Полвека спустя производители фотоаппаратов снова вернулись к космической теме и сделали камеру для смартфона OnePlus 9 Pro, которая позволяет снимать Луну, используя ночной режим, суперзум и другие инструменты.

По сути, все, что теперь умеют делать камеры, — результат освоения космоса. Это относится не только к профессиональной оптике, но и к матрице, которую используют для компактных девайсов. Чтобы улучшить качество изображения и уменьшить размеры камер для межпланетных миссий придумали технологию CMOS-матриц.

CMOS в цифровых устройствах

Это устройство визуализации на основе полупроводниковых приборов и оксида металла, которое может принимать и обрабатывать световые импульсы и переводить их в изображение. Ее преимущество заключается в низком энергопотреблении, возможности захватывать и обрабатывать изображение. CMOS-матрицы начали создавать еще в 1960-х годах, а в 1990-е их начали использовать в различных цифровых устройствах.

Лазерный радар

Еще одно космическое достижение — лидар. LIDAR — технология, которая посредством активных оптических систем получает информацию об удаленности объектов с точностью до миллиметра. Эта технология изначально была изобретена для военных целей. Первый прототип построила американская военно-промышленная авиастроительная компания Hughes Aircraft Company в 1961 году. Но широкое применение технология нашла после использования в рамках миссии «Аполлон-15» для картографирования Луны.

LIDAR состоит из трех основных компонентов: сканер, лазер и GPS-приемник. Другими элементами, играющими важную роль в сборе и анализе данных, являются фотоприемник и оптика. Суть технологии заключается в том, что система вычисляет, сколько времени требуется лучам света, чтобы попасть на объект или поверхность, отразиться от него или нее и «долететь» обратно к лазерному сканеру. Затем расстояние вычисляется с помощью формулы скорости света.

Сегодня LIDAR применяется для определения глубины водоема, поиска археологических улик на поверхности и в воде, предупреждения лесных пожаров, при лазерной коррекции зрения, в беспилотниках и iPhone 12.

Фото:youtube.com
Индустрия 4.0 3D-печать и ночные портреты: для чего в iPhone 12 Pro Max нужен лидар

Техника с дистанционным управлением

В 1996 году в институте Гленна, исследовательском центре NASA, разработали встраиваемую сетевую технологию Embedded Web Technology, чтобы космонавты могли дистанционно управлять экспериментами на борту шаттлов и МКС. Благодаря программному обеспечению члены экипажа подключались к приборам в любой части станции. Для NASA это была возможность не устанавливать программное обеспечение пользовательского интерфейса на каждый космический прибор, что сэкономило около $150 млн. В итоге Embedded Web Technology приспособили не только для космоса, но и для земной жизни. Система позволяла пользователю управлять устройством, например, кухонным прибором, автомобилем, DVD-плеером или факсом удаленно через интернет.

Популяризатором этой технологии в 1990-х годах стал бизнесмен Дэвид Мэнсбери. Ему надоело питаться фастфудом, а на приготовление домашней еды не было времени. Он подумал, что будет здорово, если духовка сама приготовит ужин к его приезду с работы. Мэнсбери обратился к инженерам исследовательского центра Гленна, которые разрабатывали удаленную систему управления для космонавтов на МКС.

Как работает Embedded Web Technology

Получив доступ к технологии Embedded Web Technology, Дэвид Мэнсбери основал компанию TMIO для реализации своей идеи. В итоге была разработана духовая печь Connect to Intelligent Oven. Она работала следующим образом: пользователь помещал в нее свежие продукты, где они хранились, как в холодильнике, до тех пор, пока не запускался процесс приготовления. Для этого с любого устройства, которое имело выход в интернет, нужно было ввести время старта, длительность и температуру. Сделать это можно было удаленно с любого устройства, где был интернет. Программа также позволяла регулировать настройки, когда процесс приготовления уже запущен. Духовая печь имела два отделения, так что готовить можно было сразу два блюда.

В 2003 году журнал TIME признал «умную» духовку изобретением года. С этой духовой печи началась эра «умного» дома. Однако после 2007 года модель, похоже, сняли с производства и никакой новой информации о ней не появлялось.

Фото:Xiaomi, «Яндекс»
Индустрия 4.0 Что такое «умный» дом, из чего он состоит и зачем нужен

Фильтры для воды

Технология фильтрации воды известна человечеству еще со времен Древнего Египта. Но фильтр в привычном нам виде появился недавно. В 1960-х годах NASA поставило на космический корабль «Аполлон» принципиально новую легкую модель очистителя воды. В отличие от существовавших в то время фильтров, модель NASA чистила воду не хлором, а ионами серебра, которые не вредят здоровью и не придают воде неприятный вкус. Ионизация воды понравилась не только космонавтам. Такой способ фильтрации стал популярен на Земле. Причем ионизатор начали использовать и для отопления, вентиляции, кондиционирования воздуха.

Со временем фильтры модернизировали. В 2000 году обнаружили, что нанокерамические волокна отлично фильтруют воду. Частицы, в том числе вирусы и бактерии, проходят через сплетенные волокна, притягиваются к ним и застревают, оставляя воду чистой. Это происходит благодаря тому, что волокна нанокерамики производят положительный электрический заряд, когда через них проходит вода, в то время как у многих примесей заряд отрицательный.

NASA участвует в разработке фильтров для воды

На этом модернизация очистителей воды не закончилась. В 2008 году на МКС доставили фильтр с системой The Water Recovery System. Вода, попадая в коллектор фильтра, проходит через специальные фильтры, после чего образуется небольшое гравитационное поле. Примеси остаются на стенках резервуара, а очищенная вода — внутри. Далее она испаряется при температуре 131 °C, чтобы образовался конденсат. В конце жидкость повторно прогоняется через фильтры.

Японский астронавт рассказывает о переработке воды на МКС

Оптические линзы

Миф о том, что космические технологии коснулись и солнцезащитных очков, можно объяснить тонким золотистым отражающим фильтром на шлеме у космонавтов. Именно он стал причиной слухов о родстве скафандра с очками-авиаторами. На самом деле освоение космоса действительно повлияло на изменения аксессуара — но только на эволюцию линз обычных очков для зрения.

В 1972 году по указу Минздрава США линзы начали делать из пластика. Преимущество материала заключалось в том, что его почти невозможно было разбить. Но поцарапать пластиковые линзы можно было запросто. Решение нашел инженер NASA Тед Уайдевен.

Уайдевен занимался системами очистки воды на космических кораблях и придумал технологию, которая позволяла наносить тонкую защитную пластиковую пленку на поверхность мембраны фильтров для воды с помощью электрических разрядов. Позже разработку начали применять для защиты забрала шлема скафандров, а в 1983 году компания-изготовитель очков Foster-Grant получила лицензию на создание оптики по той же технологии.

Автомобильные шины

Компании по производству автомобильных шин тоже заняли свое место в улучшении космического оборудования. В 1970-х годах разработчики Goodyear создали волокнистый материал для парашютных строп «Викинга-1» — космического корабля, который в августе 1975 года совершил первую успешную посадку на Марсе в рамках исследовательской миссии «Красная Планета». Позже компания начала применять технологию в производстве автомобильных шин, увеличив ресурс резины на 16 тыс. км.

Еще одно достижение принадлежит Michelin. В 2004 году компания разработала безвоздушную покрышку, которую впоследствии стали использовать для луноходов и марсоходов. Такие шины держат форму за счет сложной структуры ребер жесткости, а не за счет давления. Сейчас такую покрышку уже можно встретить на гражданских автомобилях, вот только покататься на общественных дорогах с такими шинами не удастся — пока только по треку.

Матрасы с эффектом памяти

Во время полета космонавты и летчики испытывают сильные перегрузки. Именно поэтому в 1960-х годах NASA решило разработать индивидуальные кресла для космонавтов. Но это оказалось очень дорого, поэтому придумали более универсальный вариант — пену, которая принимает форму тела. Так появился модифицированный пенополиуретан низкой упругости Memory Foam. Этот материал состоит из множества ячеек, которые под действием человеческого веса и тепла сжимаются, принимая форму тела. В итоге в ракетах и самолетах начали делать кресла из пенополиуретана. Они лучше защищают от ударов в случае аварии, повышают комфорт экипажа и пассажиров (если речь о самолетах) за счет равномерного распределения давления.

Позже пенополиуретан стали использовать в массовом производстве матрасов. Матрас из полиуретана хорошо поддерживает позвоночник, в нем не заводятся грибки и плесень, он не накапливает пыль, долго служит.

Космические технологии, которые мы будем использовать в ближайшие годы

Биопринтер

Российские ученые в 2016 году создали рабочий прототип биопринтера «Орган.Авт», который может печатать микроорганы и ткани. В 2018 году его решили запустить в космос. На МКС напечатали хрящевую ткань человека, а также ткань щитовидной железы мыши. Результаты признали успешными

Создание новых клеток и тканей в космосе понадобилось по нескольким причинам. Во-первых, отсутствие гравитации позволяет печатать объект сразу со всех сторон, а не послойно, как на Земле. Во-вторых, не приходится использовать токсичные соли гадолиния, которые обычно используются в экспериментах в земных лабораториях. Это повышает выживаемость создаваемых клеточных структур.

Футурология Футуролог Томас Фрей — о будущем биопринтинга и бессмертии человека

Когда такой принтер войдет в повседневность и людям смогут пересаживать органы, напечатанные на орбите, пока неизвестно.

Переработка пластика

Для переработки пластика в космосе используют 3D-принтер Refabricator. Он разработан компанией Tethers Unlimited и уже работает на МКС. Принтер-гибрид может как перерабатывать пластиковые отходы, так и отпечатывать новые предметы. Как это происходит? Использованный во время экспедиции пластик загружают в принтер. Далее он плавит мусор и делает из него волокна для дальнейшей 3D-печати инструментов и пластиковых запчастей. В дальнейшем этот прибор пригодится не только космонавтам в длительных полетах, но и людям на Земле.

3D-принтер на МКС

Фотобиоредактор

В Москве команда инженеров в 2018 году создала фотобиореактор, который умеет выращивать водоросли. Это прозрачный сосуд с лампочками, насосом и датчиками. В нем растут одноклеточные водоросли. Внешне аппарат похож на большой блендер. Разработка может пригодиться в космосе для путешествий на большие расстояния для жизнеобеспечения членов экипажа. Например, водоросли можно использовать как корм для рыб, которых тоже можно выращивать на борту корабля.

На Земле выращенными в фотобиоредакторе водорослями можно кормить не только рыб, но и скот. Также растения можно использовать для очистки сточных вод и создания биотоплива.

Обновлено 09.04.2021
Главная Лента Подписаться Поделиться
Закрыть