Война за чипы: сменят ли ARM процессоры x86 и почему все зависит от Apple

Macbook Pro 13 на чипе M1
Macbook Pro 13 на чипе M1 (Фото: Apple)
В мире электроники два лагеря: мобильные гаджеты с процессорами ARM и классические компьютеры с x86. В статье разберемся в отличиях и изучим тренд, который задала Apple, перейдя на собственный ARM-чип M1 в настольных ПК

Содержание

Какими бывают процессоры: x86 и ARM

В мобильных устройствах (планшеты, смартфоны) и классических компьютерах (ноутбуки, настольные ПК, серверы) используются разные процессоры. Они по-разному взаимодействуют с операционными системами и программами — взаимной совместимости нет. Именно поэтому вы не сможете запустить привычные Word или Photoshop на своем iPhone или Android-смартфоне. Вам придется скачивать из AppStore или Google Play специальную версию софта для мобильных устройств. И она будет сильно отличаться от версии для настольного ПК: как визуально, так и по функциональности, не говоря уже о программном коде, который пользователь обычно не видит.

Сверху — материнская плата iMac предыдущего поколения с процессором Intel (x86), снизу — плата iMac 2021 года с чипом M1 (ARM)
Сверху — материнская плата iMac предыдущего поколения с процессором Intel (x86), снизу — плата iMac 2021 года с чипом M1 (ARM) (Фото: Apple)

Процессоры для классических компьютеров строятся на архитектуре x86. Своим названием она обязана ранним чипам компании Intel c модельными индексами 8086, 80186 и так далее. Первым таким решением с полноценной реализацией x86 стал Intel 80386, выпущенный в 1985 году. Сегодня подавляющее большинство процессоров в мире с архитектурой x86 делают Intel и AMD. При этом у AMD, в отличие от Intel, нет собственного производства: с 2018 года им по заказу компании занимается тайваньская корпорация TSMC.

Процессор Intel 8086, 1978 год
Процессор Intel 8086, 1978 год (Фото: wikipedia.org)

Когда Acer, Asus, Dell, HP, Lenovo и любые другие производители классических компьютеров используют процессоры Intel или AMD, то им приходится работать с тем, что есть. Они вынуждены закупать готовые решения без возможности гибко доработать чипы под свой конкретный продукт. А свои собственные процессоры на архитектуре x86 никто из производителей ПК делать не может. Дело не только в том, что это крайне сложно и дорого, но и в том, что лицензия на архитектуру принадлежит Intel, и компания не планирует ее ни с кем делить. AMD же воевала в американских судах за право создавать чипы на архитектуре x86 со своим главным конкурентом более десяти лет в 1980-х и 1990-х годах.

Процессоры для мобильных устройств строятся на базе архитектуры ARM. И это не какая-то быстро и внезапно взлетевшая вверх молодая компания. Корни истории современной британской ARM Limited уходят далеко в 1980-е. Только в отличие от своих доминирующих на рынке «больших» ПК-конкурентов ARM Limited процессоры не делает. Бизнес компании построен на том, что она продает лицензии на производство чипов по своей технологии всем желающим. Причем возможности для доработки у лицензиатов максимально широкие — отсюда популярность и многообразие решений. Именно на основе архитектуры ARM Huawei делает свои мобильные чипы Kirin, у Samsung это Exynos, у Apple — серия Ax. В этот же список входят Qualcomm, MediaTek, NVIDIA и другие компании. А еще свои процессоры на ARM делает Fujitsu. Японцы назвали их A64X, и именно они в количестве 158 976 штук используются в самом мощном на момент выхода этой статьи суперкомпьютере в мире — Fujitsu Fugaku.

Суперкомпьютер Fujitsu Fugaku
Суперкомпьютер Fujitsu Fugaku (Фото: Riken)

Из открытого подхода ARM вытекает и главный недостаток: архитектура очень фрагментирована. Для x86 достаточно написать программу один раз, и она будет одинаково стабильно работать на всех устройствах. Для ARM приходится адаптировать софт под процессоры каждого производителя, что замедляет и удорожает разработку. Ну, а главный недостаток x86 вытекает из отсутствия конкуренции. В последние годы Intel, например, много упрекали за медленный или порой вовсе едва ощутимый прирост производительности от поколения к поколению. Также есть проблемы с высокими уровнями нагрева и энергопотребления.

Архитектура процессоров: CISC, RISC, и в чем разница

Ключевое отличие между x86 и ARM кроется в разной архитектуре набора инструкций. По-английски — ISA, Instruction Set Architecture. В основе x86 изначально лежала технология CISC. Это расшифровывается как Complex Instruction Set Command — вычислительная машина со сложным набором инструкций. «Сложность» здесь в том, что в одну инструкцию для процессора может быть заложено сразу несколько действий.

Полвека назад, когда первые процессоры только появились, программисты писали код вручную (сейчас для этого есть компиляторы). Одну сложную команду на старом низкоуровневом языке программирования Assembler написать было гораздо проще, чем множество простых, досконально разъясняющих весь процесс. А еще сложная команда занимала меньше места, потому что код для нее был короче, чем несколько отдельных простых команд. Это было важно, потому что объем памяти в те времена был крайне ограничен, стоила она дорого и работала медленно. Заказчики от этого тоже выигрывали — под любой их запрос можно было придумать специальную команду.

Но вот архитектура самого процессора страдала. По мере развития микроэлектроники в чипах с CISC копились команды, которые использовались редко, но все еще были нужны для совместимости со старыми программами. При этом под них резервировалось пространство на кристалле (место, где расположены физические блоки процессора). Это привело к появлению альтернативной технологии RISC, что расшифровывается как Reduced Instruction Set Command — вычислительная машина с сокращенным набором инструкций. Именно она легла в основу процессоров ARM и дала им название: Advanced RISC Machines.

Здесь ставку сделали на простые и наиболее востребованные команды. Да, код поначалу писать было сложнее, поскольку он занимал больше места, но с появлением компиляторов это перестало быть значимым недостатком. Результат — экономия места на кристалле и, как следствие, сокращение нагрева и потребления энергии. Плюс множество других преимуществ.

Почему о превосходстве ARM заговорили только недавно и при чем здесь Apple?

Если архитектура ARM так хороша, то почему же Intel и AMD не бросили все и не стали строить свои чипы на ней? На самом деле, они не оставили технологию без внимания, и к сегодняшнему дню CISC в чистом виде фактически уже не существует. Еще в середине 1990-х годов процессоры обеих компаний (начиная с Pentium Pro у Intel и K5 у AMD) обзавелись блоком преобразования инструкций. Сложные команды разбиваются на простые и затем выполняются именно там. Так что современные процессоры на архитектуре x86 в плане набора инструкций гораздо ближе к RISC, чем к CISC.

Кроме того, важно понимать, что противостояние x86 и ARM — это прежде всего противостояние Intel (потому что AMD гораздо меньше во всех отношениях: от капитализации до доли на рынках) и множества разрозненных производителей чипов для мобильных устройств. Долгое время два направления развивались как бы отдельно друг от друга. У Intel не получалось сделать достаточно мощное и энергоэффективное решение на x86 для мобильных устройств, а производители ARM-процессоров не стремились на рынок «больших» ПК. В нише мобильных устройств хватало места всем, и конкурировать там было проще, чем на фактически монополизированном Intel рынке процессоров для традиционных компьютеров.

Однако в последние годы доминирующее положение Intel пошатнулось. Прежде всего из-за того, что бизнес компании перестал соответствовать ее же собственной производственной стратегии. Согласно прогнозу одного из основателей Intel Гордона Мура, количество транзисторов в процессорах должно удваиваться каждые два года за счет перехода на более компактный технологический процесс производства (измеряется в нанометрах — нм). Как раз за счет этого повышается производительность. Впоследствии впервые озвученный в середине 1960-х годов «Закон Мура» корректировался, но сегодня стало ясно, что бесконечным этот рост быть не может. Технологии Intel дошли до «потолка возможностей» и пока уперлись в него. Переход на 14 нм, а потом и на 10 нм сильно затянулся, в то время как AMD в партнерстве с TSMC уже работает по техпроцессу 7 нм, а первым 5-нанометровым процессором в мире стал Apple M1 на архитектуре ARM.

О законе Мура на английском с русскими субтитрами

Решая множество технологических проблем с процессорами для «больших» компьютеров, Intel полностью упустила из вида рынок мобильных чипов, и теперь здесь господствуют решения ARM. Проблемы, кстати, при этом никуда не делись — чипы Intel для настольных ПК последних лет активно и справедливо критикуют. Мощные процессоры компании страдают от высокого нагрева и сильного энергопотребления, а энергоэффективные, наоборот, сильно ограничены в плане производительности.

Большинство производителей ноутбуков и компьютеров продолжают с этим мириться, и не уходят на ARM — не позволяет огромный багаж популярного софта и массовость их техники. Как вы помните, одна и та же программа не сможет работать и на x86 и, на ARM — ее нужно обязательно программировать заново. Но в 2020 году после почти 15 лет выпуска компьютеров с процессорами Intel компания Apple объявила о переходе на процессоры ARM собственной разработки. Они, кстати, тоже производятся внешним подрядчиком: на заводах уже упомянутой TSMC.

И это крайне важное заявление, потому что на рынке только у Apple есть все возможности для того, чтобы сделать этот переход успешным. Во-первых, компания сама разрабатывает процессоры на базе ARM много лет. Настольные M1 «выросли»

из мобильных чипов серии Ax. У производителей ПК на других ОС такого опыта нет или он сильно ограничен. Во-вторых, у Apple огромный опыт разработки собственных операционных систем: как мобильной, так и настольной. Конкуренты в основном используют Windows или «надстройки» для Android.

Остается совместить две системы (OS X для компьютеров, iOS для смартфонов), «заточенные» под разную архитектуру вместе, унифицировав софт, и это самый сложный пункт программы. Но и тут у Apple есть целая россыпь козырей. Это и лояльная аудитория, не готовая смотреть на продукцию конкурентов, но готовая подождать пока программы адаптируют под ARM. И собственный язык программирования Swift, который давно унифицировал процесс разработки ПО для iOS и OS X. И пусть небольшая в количестве устройств, но зато очень заметная доля на рынке ПК в деньгах, чтобы процесс адаптации «настольного» софта для x86 под работу с «мобильным» ARM стал интересен крупным разработчикам ПО. За примерами далеко ходить не надо: в Adobe на зов откликнулись одними из первых.

Немаловажно и то, что переход с Intel на ARM для Apple — далеко не первый опыт смены процессоров в своих устройствах. На Intel корпорация из Купертино переходила с PowerPC в 2005 году. А чипы PowerPC пришли на замену Motorola 68K в начале 1990-х.

Стив Джобс о переходе на процессоры Intel в 2005 году

Процессор Apple M1: чем он так хорош?

Apple M1 интересен не столько тем, что построен на базе технологий ARM, сколько своей архитектурой. Здесь на одной подложке собраны сам процессор, в котором по 4 производительных и энергоэффективных ядра, восьмиядерная графическая подсистема, нейромодуль для машинного обучения, огромные (по меркам процессоров) объемы кэш-памяти плюс тут же распаяна оперативная память. Такое решение занимает совсем мало места в корпусе компьютера, потребляет мало энергии (аккумулятор ноутбука дольше не разрядится) и может работать без активного охлаждения (ноутбук будет тихим или вовсе бесшумным) при хорошем уровне производительности.

Чип Apple M1 в Macbook Air Late 2020
Чип Apple M1 в Macbook Air Late 2020 (Фото: iFixit)

И совсем не просто так первым компьютером Apple с процессором M1 стал MacBook Air. С одной стороны, это лэптоп, главными преимуществами которого как раз и должно быть все, что дает новый процессор: компактность, автономность, тишина. С другой стороны, это компьютер для наименее требовательных пользователей, которым практически не нужен никакой специфический софт — достаточно того, что сама Apple предлагает «из коробки»: браузера, проигрывателя, офисного пакета. А для софта, который под ARM адаптировать пока не успели, Apple использует встроенный эмулятор Rosetta 2.

Следующими ПК Apple с M1 после MacBook Air стали 13-дюймовый MacBook Pro и Mac Mini. Также недавно был анонсирован новый iMac. Такие машины уже ориентированы на задачи посерьезнее, но все равно это еще далеко не профессиональный сегмент — на него в Купертино пока лишь намекают. И именно здесь к решению Apple на базе технологий ARM возникает основной вопрос: получится ли «отмасштабировать» M1 до уровня профессиональных решений, где компактность и энергоэффективность не так важны, а на первый план выходит именно производительность? Как реализовать связку М1 с мощными дискретными видеокартами, без которых о монтаже, рендеринге и других сложных вычислениях говорить не приходится? Или может быть Apple вообще готовится к выпуску собственной дискретной графики? Вопросов пока куда больше, чем ответов на них.

Новая линейка тонких (11,5 мм) iMac 2021 на базе M1
Новая линейка тонких (11,5 мм) iMac 2021 на базе M1 (Фото: Apple)

Уже готовые компактные устройства Apple с чипами M1 выглядят действительно интересно, правда выигрыш в производительности в них явно ощущается в основном только в уже адаптированных под ARM программах, но зато он очень заметный. Так что если Intel и AMD не смогут дать достойный ответ конкуренту в нише энергоэффективных ПК, то рост популярности решений Apple не заставит себя ждать даже несмотря на то, что еще какое-то время софта будет не хватать. Массовому пользователю ведь много не нужно.

Сравнение производительности отдельных ядер на чипах M1 и Intel, больше — лучше
Сравнение производительности отдельных ядер на чипах M1 и Intel, больше — лучше (Фото: GeekBench)

Сравнение производительности всех ядер на чипах M1 и Intel, больше — лучше
Сравнение производительности всех ядер на чипах M1 и Intel, больше — лучше (Фото: GeekBench)

Придут ли процессоры ARM на смену x86?

Точного ответа на этот вопрос пока не знает никто. Но уже сейчас очевидно, что в ближайшие годы основная борьба x86 в лице Intel и ARM в лице Apple развернется на рынке компактных ноутбуков. Они, в отличие от неттопов (Mac Mini) и моноблоков (iMac), значительно более востребованы. Также очевидно и то, что пользователи от такого противостояния только выиграют.

Конечно, техника (особенно у Apple) от этого не подешевеет, но зато мы прямо сейчас получили ультрапортативные лэптопы без активного охлаждения с долгожданным ощутимым приростом мощности и времени работы от батареи. Здорово и то, что разработчики Intel наконец-то взбодрятся. Из-за отсутствия конкуренции они слишком долго почивали на лаврах: самое время доставать из рукавов все припрятанные козыри. Собственно, именно так технологии и развиваются. Новый виток эволюции процессоров происходит прямо у нас на глазах, и ситуация выглядит так, что все вполне может обернуться революцией, которая полностью изменит как рынок процессоров, так и рынок компьютеров.

Обновлено 18.10.2021
Главная Лента Подписаться Поделиться
Закрыть