Что такое цифровые двойники и где их используют

Фото: Unsplash
Фото: Unsplash
В 2018 году компания Gartner в своем ежегодном исследовании технологических циклов впервые назвала цифровые двойники в числе лидеров. С тех пор технология только набирает обороты. Разбираемся, как она устроена
1

Что такое цифровой двойник

Цифровой двойник — это цифровая (виртуальная) модель любых объектов, систем, процессов или людей. Она точно воспроизводит форму и действия оригинала и синхронизирована с ним.

Цифровой двойник нужен, чтобы смоделировать, что будет происходить с оригиналом в тех или иных условиях. Это помогает, во-первых, сэкономить время и средства (например, если речь идет о сложном и дорогостоящем оборудовании), а во-вторых — избежать вреда для людей и окружающей среды.

Впервые концепцию цифрового двойника описал в 2002 году Майкл Гривс, профессор Мичиганского университета. В своей книге «Происхождение цифровых двойников» он разложил их на три основные части:

  1. Физический продукт в реальном пространстве.
  2. Виртуальный продукт в виртуальном пространстве.
  3. Данные и информация, которые объединяют виртуальный и физический продукт.

По мнению Гривса, «в идеальных условиях вся информация, которую можно получить от изделия, может быть получена от его цифрового двойника».

Официально термин «Цифровой двойник» впервые упоминается в отчете NASA о моделировании и симуляции за 2010 год. В нем говорится о сверхреалистичной виртуальной копии космического корабля, которая воспроизводила бы этапы строительства, испытаний и полетов.

Так выглядел центр по созданию цифровых двойников в NASA
Так выглядел центр по созданию цифровых двойников в NASA

Мощный толчок в развитии цифровых двойников произошел благодаря развитию искусственного интеллекта и интернета вещей. Согласно исследованию Gartner Hype Cycle, описывающему циклы зрелости технологий, это произошло в 2015 году. В 2016-м цифровые двойники и сами вошли в Gartner Hype Cycle, а к 2018 году оказались на пике.

Gartner Hype Cycle-2018
Gartner Hype Cycle-2018

2

Какими бывают цифровые двойники

  • прототип (DTP) — представляет собой виртуальный аналог реального объекта, который содержит все данные для производства оригинала;
  • экземпляр (DTI) — содержит данные обо всех характеристиках и эксплуатации физического объекта, включая трехмерную модель, и действует параллельно с оригиналом;
  • агрегированный двойник (DTA) — вычислительная система из цифровых двойников и реальных объектов, которыми можно управлять из единого центра и обмениваться данными внутри.

К примеру, на Ближнем Востоке технология цифрового двойника позволила «собрать» 20 нефтеперерабатывающих и нефтедобывающих предприятий компании ADNOC в единый диспетчерский пункт и унифицировать все процессы.

Оптимальной погрешностью между работой цифрового двойника и его физического прототипа считают 5%.

3

Какие задачи решают цифровые двойники

  1. Провести тестовый запуск процесса или производственной цепочки быстро и без существенных вложений.
  2. Обнаружить проблему или уязвимость до того, как будет запущено производство или объект поступит в эксплуатацию.
  3. Повысить эффективность процессов или систем, отследив все сбои еще до старта.
  4. Снизить риски — в том числе финансовые, а также связанные с безопасностью для жизни и здоровья персонала.
  5. Повысить конкурентоспособность и прибыльность бизнеса.
  6. Строить долгосрочные прогнозы и планировать развитие компании или продукта на годы вперед.
  7. Повысить лояльность клиентов за счет точного прогнозирования спроса и потребительских качеств продукта.

Цифровые двойники для разработки и кастомизации роботов

Анастасия Пердеро, менеджер проекта Internet of Energy Центра энергетики Московской школы управления Сколково:

«Цифровые двойники позволяют реалистично моделировать не только сами объекты, но и процессы их строительства, эксплуатации в различных условиях. Сейчас они активно применяются для критической инфраструктуры компаний — подключенных промышленных активов, активно генерирующих данные — и могут использоваться на разных этапах жизненного цикла объекта».

4

Где применяют цифровых двойников

  • Добыча и переработка полезных ископаемых

Цифровые двойники помогают снизить риски при добыче и переработке нефти и газа. Это позволяет сохранить жизни сотрудников и избежать ущерба для окружающей среды, а также сэкономить огромные суммы.

На одном из европейских нефтеперерабатывающих предприятий система предикативной (прогнозной) аналитики Schneider Electric позволила предсказать сбой большого компрессора за 25 дней до того, как он случился. Это сэкономило компании несколько миллионов долларов.

  • Крупное производство

Технология цифровых двойников позволяет создавать отдельные детали и воспроизводить целые производственные цепочки, проводя виртуальные испытания и предупреждая сбои в работе оборудования.

Корпорация Siemens использует цифровых двойников для разработки двигателей, систем коммуникаций и даже скоростных поездов

  • Энергетика

Цифровые двойники применяют, чтобы оптимизировать работу электростанций, избежать сбоев в подаче электричества и рационально подойти к энергопотреблению.

Благодаря цифровым двойникам компания GE сэкономила более $1,5 млрд для своих потребителей.

  • ИТ-инфраструктура

Можно смоделировать как отдельное устройство или сервис, так и целую сеть, рассчитав предельные нагрузки и продумав защиту от киберугроз.

Сервис по созданию цифровых двойников на платформе Azure от Microsoft
Сервис по созданию цифровых двойников на платформе Azure от Microsoft

  • Строительство

С помощью цифровых двойников можно построить модель будущего здания или целого квартала и спрогнозировать, как оно впишется в среду, выдержит климатические условия и нагрузки на несущие конструкции.

При восстановлении Нотр-Дама использовали цифровой двойник собора

  • Дизайн

Виртуальные 3D-модели предметов интерьера или декора помогают представить, как будет выглядеть объект, нужно ли что-то изменить в его форме, цвете и деталях.

  • Ретейл

Цифровые двойники позволяют спрогнозировать загрузку торговых залов, перемещение клиентов и сотрудников, оптимальный уровень освещенности и температуру.

  • Транспорт и логистика

С помощью цифровых двойников можно оптимизировать маршруты транспорта, работу технических служб и пассажиропотоки.

Виртуальная система обработки багажа для крупного аэропорта позволила заранее просчитать, что понадобится дополнительная линия транспортировки для перераспределения потоков при внештатных ситуациях.

  • Образование

Цифровые модели помогают изучить физические объекты и процессы в виртуальной среде, часто — с использованием виртуальной, дополненной и смешанной реальности.

  • Космическая отрасль

С помощью цифровых двойников разрабатывают, тестируют и запускают космические корабли и целые программы.

Цифровой двойник «Аполлона-13» в 1970 году позволил инженерам и астронавтам на Земле спасти миссию во время аварии.

  • Медицина

Цифровые двойники пациентов помогают сканировать жизненные показатели в режиме онлайн, подбирать наиболее эффективное лечение и проводить операции.

Как работают цифровые двойники от Philips

  • Спорт

Можно отработать тактику командной игры или провести индивидуальную тренировку на цифровом двойнике.

Цифровые симуляции используют для усовершенствования болидов «Формулы-1», рассчитывая идеальные показатели и технические характеристики для гоночных трасс.

  • Урбанистика

Существуют цифровые двойники целых городов — например, Сингапура или российского Кронштадта. На них отслеживают транспортные потоки, работу коммуникаций, застройку, экологическую обстановку и энергопотребление, чтобы вовремя вносить важные изменения.

  • Сельское хозяйство

Благодаря цифровым двойникам можно просчитать климатические условия и урожай, сделав земледелие более эффективным.

5

Как выглядит процесс создания цифрового двойника

Двойники можно создавать разными способами:

  • графическая 3D-модель;
  • модель на базе интернета вещей;
  • интегрированные математические модели — такие как CAE-системы (Computer-aided engineering, решения для инженерного анализа, расчетов и симуляций) для инженерных расчетов;
  • различные технологии визуализации — включая голограммы, AR и VR.

Этапы создания двойника выглядят следующим образом.

Исследование объекта

Этот этап предшествует разработке только в том случае, если у цифрового двойника есть реальный прототип — например, работающее предприятие или система коммуникаций. Тогда разработчики составляют детальную карту прототипа, воспроизводят все процессы и характеристики. При этом важно изучить объект в разных условиях.

Моделирование цифровой копии объекта

Этот этап может быть первым, если реального прототипа еще нет и создание цифрового двойника ему предшествует. Например, в строительстве или дизайне, когда вначале создается цифровая 3D-модель, а уже потом — оригинал здания или другого объекта.

Для построения комплексной модели используются математические методы вычисления и анализа:

  • Метод конечных элементов (FEA — Finite Element Analysis), позволяющий рассчитать эксплуатационную нагрузку. Его применяют, допустим, для расчета механики деформируемого твердого тела, теплообмена, гидродинамики и электродинамики.
  • FMEA-модели (Failure Mode and Effects Analysis, анализ видов и последствий отказов) необходимы для анализа надежности систем и выявления наиболее критических шагов производственных процессов.
  • CAD-модели (computer-aided design/drafting, средства автоматизированного проектирования) используются, чтобы рассчитать внешние характеристики и структуру объектов, материалов и процессов.

Воплощение модели

Затем рассчитанную ранее архитектуру цифрового двойника переносят на специальные платформы — такие как Siemens или Dassault Systemes. Они объединяют математические модели, данные и интерфейс для управления цифровым двойником, превращая его в динамическую систему. Этот этап можно сравнить с трансформацией программного кода в программу или приложение с визуальным интерфейсом, который понятен любому пользователю.

Тестирование основных процессов работы на цифровом двойнике

Главная цель этого этапа — спрогнозировать, как будет вести себя объект или система в обычном режиме и при внештатных ситуациях, чтобы избежать поломок и перегрузки после запуска. Для этого к процессу подключают технических аналитиков, которые собирают большой массив данных в ходе испытаний, чтобы просчитать алгоритмы для любых возможных условий и ситуаций.

Запуск и наладка

Если предыдущий этап провели корректно, в процессе работы реального прототипа можно избежать до 90% сбоев и поломок. Однако часть ситуаций все же не удается спрогнозировать, и тогда их отслеживают уже на этапе запуска и наладки цифрового двойника.

Корректировка и развитие оригинального объекта или системы

Далее инженеры продолжают работать с цифровым двойником как с реальным физическим объектом до тех пор, пока не будут отлажены все системы и процессы. По результатам этой работы в оригинальный объект вносят изменения, чтобы добиться его максимальной эффективности.

6

Перспективы цифровых двойников

По данным Gartner, 12% компаний, которые используют интернет вещей, также применяют и цифровые двойники, а 62% планируют это сделать. GE Digital в 2019 году называла цифру в 1,2 млн цифровых двойников в мире. По другим прогнозам, в ближайшие пару лет рынок цифровых двойников достигнет $16 млрд.

В промышленности технология уже сегодня помогает повысить эффективность минимум на 10%, а в нефтяной отрасли — сэкономить от 5% до 20% капитальных вложений. В ближайшие годы крупные компании перейдут к дистанционному мониторингу и управлению целыми производствами и всеми подразделениями через виртуальные системы.

То же самое произойдет и с городами: они обзаведутся цифровыми двойниками, объединяющими все важнейшие системы, районы и объекты городской инфраструктуры. Онлайн-мониторинг будет осуществляться при помощи IoT-датчиков, сканеров и дронов с машинным обучением, а сами виртуальные системы будут размещены в облаке. При этом доступ к двойникам будет и у федеральных властей. Это позволит, в частности, экстренно реагировать на чрезвычайные ситуации и предотвращать их даже в самых отдаленных регионах.

Цифровых двойников можно будет использовать и в повседневной жизни: например, чтобы следить за жизненными показателями или улучшить работу какого-либо устройства. С помощью интернета вещей мы сможем объединить все коммуникации и технику в доме в единую систему и управлять ими с помощью цифрового двойника дома.

Обновлено 03.08.2021
Главная Лента Подписаться Поделиться
Закрыть